Undulatory swimming in shear-thinning fluids: Experiments with C. elegans
نویسندگان
چکیده
The swimming behaviour of microorganisms can be strongly influenced by the rhe ology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undula tory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer’s kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode’s speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode’s tail, compared to Newtonian fluids of similar effective viscosity. These findings are compared to recent theoretical and numerical results.
منابع مشابه
Undulatory swimming in non-Newtonian fluids
We numerically investigate the effects of non-Newtonian fluid properties, including shear thinning and elasticity, on the locomotion of Taylor’s swimming sheet with arbitrary amplitude. Our results show that elasticity hinders the swimming speed, but a shear-thinning viscosity in the absence of elasticity enhances the speed. The combination of the two effects, modelled using a Giesekus constitu...
متن کاملViscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm.
Undulatory motion is common to many creatures across many scales, from sperm to snakes. These organisms must push off against their external environment, such as a viscous medium, grains of sand, or a high-friction surface; additionally they must work to bend their own body. A full understanding of undulatory motion, and locomotion in general, requires the characterization of the material prope...
متن کاملEfficient nematode swimming in a shear thinning colloidal suspension.
The swimming behavior of a nematode Caenorhabditis elegans (C. elegans) is investigated in a non-Newtonian shear thinning colloidal suspension. At the onset value (ϕ∼ 8%), the suspension begins to exhibit shear thinning behavior, and the average swimming speed of worms jumps by approximately 12% more than that measured in a Newtonian solution exhibiting no shear dependent viscosity. In the shea...
متن کاملThe bearable gooeyness of swimming
Understanding biolocomotion in fluids has long been a focus of fluid dynamicists. One method to quantify the impact of environmental stresses on locomotion is to systematically change the mechanical properties of the surrounding medium, and measure how that change influences swimming kinematics and energetics. In a recently published investigation, Gagnon et al. (J. Fluid Mech., vol. 758, 2014,...
متن کاملAnalysis of the Swimming - to - Crawling Transition of Caenorhabditis elegans in Viscous Fluids by RISA KAWAI
The locomotory behavior of the nematode Caenorhabditis elegans is often characterized by two distinct gaits-swimming when in fluids and crawling when on surfaces. Swimming is characterized by about a twice greater wavelength and about four time greater frequency of undulatory waves, compared with the crawling gait. These mechanisms which generate these gaits are not well-understood but have bee...
متن کامل